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Abstract
We investigate the Casimir force in one dimension for general dispersion
relations. In particular, we find an explicit formula for the operator that maps
general dispersion relations into the corresponding Casimir force functions.
We show that this operator is a modified Laplace transform and we verify
that it is independent of the regularization method used in its calculation.
The knowledge of this operator allows one, in particular, to identify the
circumstances under which the behaviour of the dispersion relation at one
length scale can affect the behaviour of the Casimir force at a different length
scale.

PACS numbers: 12.20.−m, 12.20.Ds, 11.55.Fv

1. The Casimir force and dispersion relations

There are numerous influences on the strength and sign of the Casimir effect, see [1–4], such
as the surfaces’ shape, roughness and reflection properties as well as the temperature. Here,
we will explore aspects of how the nontrivial propagation of the quantum field in a medium
influences the Casimir effect. Concretely, we will study the influence of general non-vacuum
dispersion relations on the Casimir effect. We will here not focus on any particular modified
dispersion relation. Instead, our aim is to calculate the operator which maps generic dispersion
relation functions ω(k) into the resulting Casimir force functions F(L). This then allows us
to investigate, in particular, how a nontrivial behaviour of a dispersion relation at one length
scale affects the behaviour of the Casimir force function at another length scale.

To this end, for simplicity, we will consider a massless real scalar field in one dimension
between two perfectly conducting parallel ‘plates’, which in this case are of course mere
points. We place these points at x = 0 and x = L, i.e., we impose Dirichlet boundary
conditions φ(0, t) = 0 = φ(L, t) for all t. The usual bosonic quantization procedure then
yields the one-particle Hilbert space H = L2([0, L]) on which is built the symmetric Fock
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space F+(H) with Fock vacuum |�〉 so that the Hamiltonian H expressed in terms of creation
and annihilation operators reads

H =
∞∑

n=0

ω(kn)

(
a∗

nan +
1

2

)
, kn = nπ

L
. (1)

In the vacuum the dispersion relation is linear, ω(k) = k, and the vacuum energy 〈�|H |�〉
between plates of distance L is therefore divergent, E(L) = 1

2

∑∞
n=0 ω(kn) = ∞, with the

modes appearing to contribute the more the shorter their wavelength, i.e., the larger k and n
are. One proceeds by regularizing the divergence and by then calculating the change in the
regularized total energy (of a large region that contains the plates) when varying L. As is well
known, the resulting expression for the Casimir force remains finite after the regularization is
removed and reads

F(L) = − π

24L2
. (2)

It has been shown that this result does not depend on the choice of regularization method.
Our aim now is to recalculate the Casimir force within standard quantum field theory while
allowing general nonlinear dispersion relations. To this end, it will be convenient to write
generalized dispersion relations in the form

ω(k) = kcf

(
k

kc

)
, (3)

where kc > 0 is a constant with the units of momentum and where the function f encodes the
nonlinearities. We shall make the following minimal assumptions:

• f (0) = 0, and f (x) = x + o(x) as x ↘ 0 (regular dispersion at low energies);
• f (x) � 0 when x � 0 (stability: each mode carries positive energy).

We will use the term dispersion relation for both ω(k) and f (x).
For generically modified dispersion relations the vacuum energy must be assumed to be

divergent and therefore in need of regularization. Let us therefore regularize the energy by
introducing an exponential cut-off function, parametrized by α > 0. (We will later show that
other cut-off functions could be used if more convenient or if necessary to ensure convergence
for a given dispersion relation.) The regularized vacuum energy between the plates then reads

Eα(L) = 1

2

∞∑
n=0

kcf (κn) e−αkcf (κn), (4)

with κn = nπ/kcL. The outside region being infinitely extended, the energy density outside
the plates can be calculated from the above by letting L go to infinity:

Eα = lim
L→∞

Eα(L)

L
= k2

c

2π

∫ ∞

0
dx f (x) e−αkcf (x). (5)

In the second step we used (4) and that the limit is a Riemann sum with �x = L−1.
In order to calculate the Casimir force, let us now consider a very large but finite region,

say of length M, which contains the two plates. The total regularized energy in this region is
finite and consists of the energy between the plates (4), plus the energy density outside the
plates (5), multiplied by the size of the region outside, namely M − L. Note that choosing
M large enough ensures that the energy density outside the plates does not depend on L. The
regularized Casimir force is the negative derivative of the total energy with respect to a change
in the distance of the plates:

Fα(L) = − ∂

∂L
Eα(L) + Eα. (6)
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Hence, before removing the regularization (i.e. before letting α ↘ 0), the Casimir force in the
presence of a nonlinear dispersion relation is given by

Fα(L) = kc

2L

∞∑
n=0

ϕα(n) + Eα. (7)

Here, we introduced the following notation:

ϕα(t) = κtf
′(κt ) e−αkcf (κt ) (1 − αkcf (κt )) . (8)

We observe that if the first term in (7) were an integral instead of a series, then the force
function would identically vanish. This suggests the use of the Euler–Maclaurin sum formula,

∑
a<n�b

ξ(n) =
∫ b

a

ξ(t)dt +
k∑

r=0

(−1)r+1Br+1

(r + 1)!
(ξ (r)(b) − ξ (r)(a))

+
(−1)k

(k + 1)!

∫ b

a

Bk+1(t)ξ
(k+1)(t) dt, (9)

to express the series of ϕα as an integral of ϕα plus correction terms, the latter summing up to
the Casimir force. We perform the obvious substitutions, note that limx→∞ ϕ(n)

α (x) = 0 for
all n � 0 and that ϕα(0) = 0 to obtain

Fα(L) = − kc

2L

k∑
r=1

B2r

2r!
ϕ(2r−1)

α (0) +
kc

2L
�k[ϕα], (10)

where �k[ϕα] denotes the remainder integral

�k[ϕα] = (−1)k

(k + 1)!

∫ ∞

0
Bk+1(t)ϕ

(k+1)
α (t) dt, (11)

and where we used that, except for B1, all Bernoulli numbers Bs with odd indices s are zero.
As noted earlier, the integral approximating the sum and that of equation (5) cancelled out.
The actual Casimir force is obtained by removing the regularization:

F(L) = lim
α↘0

Fα(L). (12)

Explicitly, let us calculate this for a polynomial dispersion relation f (x) = ∑n
s=0 νsx

s .
Since ϕα(t) is jointly infinitely differentiable in α and t, the limit α ↘ 0 in ϕα(t) can be
taken before differentiating. From (8) we then have ϕ0(t) = limα↘0 ϕα(t) = κtf

′(κt ). Thus,
iterated differentiation yields

ϕ
(n)
0 (t)|t=0 = n

(
π

kcL

)n

f (n)(0). (13)

After sufficiently many differentiations, the remainder integral �k[ϕα] vanishes. Indeed, firstly
for all fixed t > 0, ϕ(k+1)

α (t) → 0 as α ↘ 0, and secondly ϕ(k)
α (t) → 0 as t → ∞. Split the

integral
∫ ∞

0 = ∫ b

0 +
∫ ∞
b

for some finite b > 0. The first integral can be exchanged with the
limit and vanishes by the above remark. The second can be estimated by∣∣∣∣

∫ ∞

b

Bk+1(t)ϕ
(k+1)
α (t) dt

∣∣∣∣ � |Bk+1|
∣∣ϕ(k)

α (b)
∣∣ α↘0−→ 0, (14)

where we used the second remark and the fact that the Bernoulli functions are bounded above
by the corresponding Bernoulli numbers. Finally, f (s)(0) = s!νs . The Casimir force is thus
given by

F(L) = − kc

2L

k∑
r=1

(2r − 1)B2r

2r
ν2r−1

(
π

kcL

)2r−1

. (15)
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For example, for the vacuum dispersion relation f (x) = x we recover the well-known result
F(L) = −π/24L2 as it should be. Interestingly, the even powers in a polynomial dispersion
relation, i.e. the coefficients ν2r , do not contribute to the Casimir force. We also note that the
mapping K : f (x) �→ F(L) from polynomial dispersion relations into their corresponding
Casimir force functions is a linear operator between the two sets of functions.

The operator K can be linearly extended to analytic dispersion relations given by their
power series. This step is nontrivial, however, because care will have to be taken with respect
to the domain of the Casimir force function: F(L) is given by a power series in L−1 whose
radius of convergence may be finite. Thus, for some dispersion relations the Casimir force may
only be defined for sufficiently large separations between the plates. This is nicely consistent
with the intuitive expectation that in certain media it should not make sense to consider the
Casimir force for plate distances smaller than a certain finite (e.g., atomic) length scale. We
will discuss possible wider ramifications at the end. To proceed, let us now write the mapping
F(L) in a more convenient form

F(L) = kc

L

∞∑
r=1

(−1)r (2r − 1)(2r − 1)!

(2π)2r
ζ(2r)ν2r−1

(
π

kcL

)2r−1

. (16)

Here, ζ(s) is the Riemann zeta function. This formulation for F(L) is easily obtained from
(15) by using

Bn = 2n(−1)n+1

(2π)n
cos(πn/2)(n)ζ(n). (17)

We recall that ζ(r) → 1 very quickly as r grows. Hence, for questions related to convergence,
it is sufficient to study the series with ζ(2r) set to unity. Now for a generic analytic dispersion
relation, the corresponding Casimir force function series has a finite radius of convergence in
1/L, i.e., it is defined only for plates separations larger than Lc, with

L2
c = 1

(2kc)2
lim sup

r→∞

[
k2
c (2r − 1)(2r − 1)!

(π)
ζ(2r)|ν2r−1|

]1/r

. (18)

An example where Lc is not zero is f (x) = sinh(x), for which Lc = (2kc)
−1. Let us recall at

this point that our calculations so far implicitly assumed that exponential regularization suffices
to render the energy density finite both between the plates and outside of them. It is essential
to prove that our results are independent of the exact form of the regularizing function. Let
us assume now that the cut-off is realized by a general infinitely differentiable function γα(t)

(jointly of α and t in the non-negative reals), such that limt↘0 γα(t) = 1, that limα↘0 γα(t) = 1
for all t and that

∫ ∞
0 dx f (x)γα [f (x)] < ∞. The derivation of the Casimir effect presented

above can then be repeated point by point using the corresponding new definition of ϕα and
the same result (16) will therefore be obtained.

2. Analysis of the operator K

Our aim is to analyse the properties of the linear operator K which maps dispersion relations
f into Casimir force functions F, namely K : f (x) �→ F(L). To this end, let us first calculate
more convenient representations of K. A first representation is obtained from (16), namely

K =
∞∑

r=1

k2
c (−1)r (2r − 1)ζ(2r)

π

(
1

2kcL

)2r d(2r−1)

dx(2r−1)

∣∣∣∣
x=0

. (19)
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For the rest of this section, we shall work with the (very good) approximation in which the
zeta function is set to 1, as discussed above. It is then straightforward to check that K can be
written as the integral operator

(Kf )(L) = k2
c

π
Im

∫ ∞

0
f (ix)(1 − 2kcLx) e−2kcLx dx, (20)

where Im stands for taking the imaginary part. Indeed, successive integrations by parts
reconstruct the series of derivatives term by term, and the even powers are eliminated because
they are purely real. We note that the analytic continuation of the dispersion relation to
the complex axis is a mathematically safe operation since it is an entire function. It is also
possible, however, to restrict attention only to the real axis, namely by neglecting the even
part of the dispersion relation, as it will not contribute. Without restricting generality we can
therefore assume that the dispersion relation is odd, i.e., that it can then be written in the form
f (x) = xg(x2). In terms of the function g, the above integral representation then takes the
form

(Kf )(L) = k2
c

π

∫ ∞

0
xg(−x2)(1 − 2kcLx) e−2kcLx dx. (21)

Finally, we use the properties of the Laplace transform with respect to differentiation to obtain

(Kf )(L) = k2
c

π

(
1 + L

d

dL

) ∫ ∞

0
e−2kcLx xg(−x2) dx. (22)

3. The relationship between effects at different length scales

Let us now use the explicit form for K obtained in (22) to study how a nontrivial behaviour of
the dispersion relation at one scale affects the behaviour of the corresponding Casimir force
function at other scales. To this end, we note that the function g is to be evaluated at negative
arguments before the Laplace transform is performed. This is important because g(y) for
positive y determines the dispersion relation through f (x) = xg(x2) but g(y) for negative y

determines the Casimir force function Kf through (22). Clearly, g may be very close to 1 for
y > 0 while at the same time its unique analytic extension for y < 0 may be far from being
constant.

Let us begin by investigating the lowest order corrections to the dispersion relation f ,
namely f (x) = x + ν2x

2 + ν3x
3, with coefficients ν2, ν3 as large as of order one. The

corresponding Casimir force function is

F(L) = − π

24L2
+ ν3

π5

20k2
cL

4
. (23)

The quadratic correction term ν2x
2 is an even component of f and therefore does not affect

the Casimir force. The next order correction significantly changes the Casimir force at very
short distances where the interaction even becomes repulsive, as shown on the left of figure 1.
However, F(L) converges very rapidly towards the usual Casimir force function F (0)(L) for
plate separations that are significantly larger than k−1

c .
To be precise, let Lm denote the distance scale at which we may want to perform a

measurement of the Casimir force. It is clear that 1/kc is the length scale at which the dispersion
relation starts to show significant nonlinearity. The dimensionless parameter σ = (kcLm)−1

thus quantifies how far the scales 1/kc and Lm are apart. In terms of σ , the relative size of the
effect of the x3 modification to the dispersion relation on the Casimir force is then found to be

F (0)(L) − F(L)

F (0)(L)
= ν3

6π4

5
σ 2 	 1. (24)
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Figure 1. The Casmir force for the lowest order corrections (left) and the integral kernel K (right).
L is in units of k−1

c .

We observe that the effect on the Casimir force is suppressed quadratically with the ratio, σ ,
of the dispersion modification scale 1/kc and the Casimir force measurement scale Lm. This
is consistent with the expectation that a modification of the dispersion at very short length
scales only very weakly affects the Casimir force at longer length scales.

Naively, one might expect that higher order corrections to the dispersion at short lengths
contribute even less to the Casimir force at larger length scales. Indeed, dispersion relation
terms ∝ x2r−1 are mapped to Casimir force terms ∝ σ 2r−1, so that it would seem that higher
order corrections get exponentially suppressed. Interestingly, however, this is not the case. The
exact mapping (16) contains an extra factorial (2r − 1)! that grows faster than exponentially.
The relative correction for f (x) = x + ν2r−1x

2r−1 is

F (0)(L) − F(L)

F (0)(L)
= ν2r−1

(−1)r−1(2r − 1)ζ(2r)

4π2
(2r − 1)!

(σ

2

)2r−2
. (25)

It is straightforward to apply Stirling’s formula for the factorial, n! ≈ √
2πn

(
n
e

)n
for n  1,

in order to calculate how large r needs to be for the factorial amplification to overcome the
exponential suppression. We find that a correction term ν2r−1x

2r−1 with ν2r−1 ≈ 1 in the
dispersion relation leads to a relative change of order one in the Casimir force at the infrared
scale Lm if r is of the order σ−1. This means that, for example, a modified dispersion relation of
the form f (x) = x +ν2r−1x

2r−1, say with r ≈ 105 and ν2r−1 ≈ 1, is virtually indistinguishable
from the linear dispersion relation f (x) = x at all scales up to the length scale 1/kc, and yet it
does lead to a modification of the Casimir force which is of order one even at a measurement
length scale Lm with five orders of magnitude longer than 1/kc. We conclude that even
though the first-order terms contribute extremely little to the Casimir force, very high order
corrections to the dispersion relations can contribute significantly to the Casimir force, in fact,
the more so the larger r is.

Actual dispersion relations might be given by a series f (x) = x+
∑∞

n=2 νnx
n and therefore

contain terms ν2r−1x
2r−1 for arbitrarily large r. At the same time, the prefactors νn must of

course obey νn → 0 as n → ∞ because this is a necessary condition for the convergence
of the series. We conclude that it is this competition between the decay of the coefficients
ν2r−1 and the increasing influence on the Casimir effect of terms x2r−1, for r → ∞, which
decides whether or not a dispersion relation that is significantly nonlinear only below a length
scale 1/kc does or does not lead to an appreciable effect on the Casimir force at significantly
larger plate separations, Lm  1/kc. Let us now explicitly investigate this competition. To
this end, we can conveniently make use of the representation of K in terms of the Laplace
transform (21).

6



J. Phys. A: Math. Theor. 41 (2008) 164021 S Bachmann and A Kempf

Firstly, we recall that for f (x) = xg(x2) the mapping involves evaluating g on the
negative real axis. g being an entire function, its behaviour on the positive half-axis fully
determines it on the negative half-axis too, which implies as it should be that the dispersion
relations do determine the corresponding Casimir forces uniquely. Secondly, however, there
exist entire functions g which are arbitrarily close to 1 for 0 < y < 1 and which nevertheless
reach arbitrarily large values on the negative half-axis. Such functions do not noticeably affect
the dispersion relation down to the length scale 1/kc but they do strongly affect the Casimir
force at length scales Lm that can be arbitrarily larger than 1/kc. These are the dispersion
relations with

g(y) = 1 + h(y), (26)

where the function h obeys h(y) ≈ 0 for y ∈ (0, 1) while exhibiting large |h(y)| in some
range of negative values of y. The correction to the force �F = F − F (0) in terms of the
correction h to the dispersion relation can again be read from (21):

�F(L) = k2
c

π

∫ ∞

0
xh(−x2)(1 − 2kcLx) e−2kcLx dx. (27)

The integral kernel

K(x,L) = (1 − 2kcLx) e−2kcLx (28)

is positive for x < (2kcL)−1, negative for x > (2kcL)−1 and exponentially decreases to zero
for x  (2kcL)−1. (Note that the integral of the kernel over all x ∈ [0,∞) is 0, which
expresses the fact that the Casimir force does not depend on the absolute value of the energy.)
Thus, for a fixed plate separation L, what matters most for the Casimir force is the behaviour
of h(y) from y = 0 to about y ≈ −(kcL)−2. As we increase L, the interval y ∈ (−(kcL)−2, 0)

on which the integral kernel K is mostly supported is shrinking, as can be seen on the right of
figure 1.

Thus, there is a significant effect on the Casimir force at large plate separations,
L = Lm  1/kc, if the function h is either of order 1 in this small interval close to the
origin or it must be exponentially large (so as to compensate the exponential suppression in
K) in some interval to the left of −(kcL)−2. Of course, both are possible. There are entire
functions h which possess either one of these behaviours on the negative half-axis. These are
arbitrarily close to 0 for 0 < y < 1, so as to leave the dispersion relation virtually unchanged
at large length scales and yet they do significantly affect the Casimir force at large Lm.

There is even the extreme case of functions, h, whose corresponding dispersion relation
f is arbitrarily little affected at all scales while the Casimir force function is arbitrarily much
affected at any desired long length scale. An example is the case where h is a Gaussian which
is centred around a low negative value y0 < 0 while being so sharply peaked that its tail into
the positive half-axis is negligibly small. The function that enters into the calculation of the
Casimir force, xg(−x2), then features the low-x spike of the Gaussian, implying by our above
consideration that the Casimir force is affected at large plates separation. At the same time,
the dispersion relation itself, xg(x2), is virtually unaffected for all x.

4. Conclusions and outlook

We calculated the operator K which maps general dispersion relations into the corresponding
Casimir force functions and found that K is essentially a Laplace transform. The analysis of K
showed that, as expected, modifications to the vacuum dispersion relation below some length
scale 1/kc generally only negligibly affect the Casimir force function at plate distances Lm

that are significantly larger than 1/kc. We also found, however, that for fine-tuned dispersion

7
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relations their nonlinearities at a scale 1/kc can strongly affect the Casimir force at arbitrarily
larger length scales Lm. It should be interesting, of course, to generalize the present analysis
to electrodynamics in three dimensions and apply it to dispersion relations of real media.

Finally, let us speculate that it also should be interesting to calculate, in a similar study
of a quantum vacuum effect, the operator K which in inflation maps generalized dispersion
relations of the inflation into the corresponding inflationary perturbation spectra. This is of
interest because generalized dispersion relations could encode Planck scale physics, while the
inflationary perturbation spectrum is understood to be measurable in the cosmic microwave
background (CMB). Calculations have been performed so far only for particular dispersion
relations, and there is a debate as to the magnitude of the generically to be expected effect
at measurable scales in the CMB [5, 6]. The relevant dimensionless σ is the ratio between
the Planck length and the Hubble length during inflation. In inflation, σ is around σ ≈ 10−5,
indicating that any effects would likely be suppressed by a factor of at least σ . If the operator
K of inflation behaves similar to that in the Casimir effect, the effect in inflation could be
larger for some fine-tuned dispersion relations, possibly bringing them closer to observability.
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